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The front propagation of a single crystallizing domain has been well studied for more than a century. In
many important crystallization processes, however, multiple domains grow simultaneously, resulting in a
multicrystalline, meshlike aggregate. This is the typical case for organic compounds, including polymers and
alkanes. We have studied such growth in the case of a normal alkane precipitating from solution in the presence
of kinetic inhibitors—additives which, when present in trace amounts, have a dramatic effect on growth
kinetics and morphology. In this case, we observe a distinct banded growth with a typical length scale of
300 mm superimposed on the finer mesh structure. We present a simple continuum model that demonstrates the
essential behavior of this growth.
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I. INTRODUCTION

Because of the tremendous importance of crystallization
se.g., in mineralization, materials manufacturing, and pre-
cipitationd, crystallization front propagation has been mod-
eled theoretically since the late 19th centuryf1,2g. Many of
these studies examine the diffusion-limited propagation of a
single domain from a molten or solvated state. One common
approach is to treat crystallization as a Stefan problem in
which local quasiequilibrium is maintained at the moving
growth front while heat, impurities, or solvent excess gener-
ated at the front is carried away by diffusionf2,3g.

In many cases of interest, competition between simulta-
neously crystallizing domains results in a complicated micro-
structure. For compact domains, the resulting microstructure
exhibits grains with relatively simple shapes. Few theoretical
studies have addressed the case where multiple domains with
complicated front structures produce a solid with a compli-
cated microstructure. This case is, however, relevant to many
systems of interest, such as crystallization from solution,
where solidification is incomplete, and crystallization of
polymers, where the resulting structure consists of a noncrys-
talline arrangement of crystalline lamellae, which are often
separated by amorphous material. One important example is
spherulitic growth in which crystallites are arranged in a ra-
dial array bound by a spherical envelope which propagates at
constant speedf4g. This morphology is typical of polymers,
but is seen in other materials, usually at deep undercoolings,
as well.

Here, we present a continuum model of network growth
which considers solute diffusion and a simple treatment of
growth kinetics. We apply our model to the crystallization of
normal alkanes from solution in the presence of additives
that affect the kinetics of growth. Puren-alkanes typically
crystallize as thin plates—often hundreds of micrometers

across and only a few micrometers thick—due to large an-
isotropy in growth velocities for different crystallographic
directions. Specific additives developed by the petroleum in-
dustry to prevent the precipitation of alkanes from diesel
fuels and fuel oils at low temperatures cause alkanes to crys-
tallize as a highly branched meshlike network. In a previous
study, we reported the characteristics of such networks, in-
cluding the formation of a distinctly banded structure when
crystallized in a moving temperature gradientf5g. We find
that our model is able to reproduce the essential behavior of
the banded crystallization. We describe our experimental
techniques and results in Secs. II and III, respectively,
present our continuum growth model in Sec. IV, and com-
pare the model results, obtained in Sec. V, with the experi-
mental data.

II. EXPERIMENTAL METHODS

The experimental methods employed here have been pre-
viously reportedf5g. Briefly, samples consisted of tricosane
sn-C23H48, which we refer to as C23d dissolved in dodecane
sn-C12H26, or C12d, at concentrations of 18–55 mol %. To
some of the samples was added a small amounts2% by mass
for the studies reported hered of polysoctadecyl acrylated,
hereafter referred to as PA-18, which is known to affect the
kinetics of alkane crystallizationf5,6g.

For visualization by optical microscopy, sample cells con-
sisting of square glass plates approximately 2 cm across
separated by wire spacers of diameter 75mm were filled
with the sample solutions. The sample cells were sealed us-
ing an adhesive that crosslinks on exposure to UV radiation
sNOA 61, Norland Productsd.

Crystallization of the samples was studied by video mi-
croscopy using an optical microscopesOlympus BX-60d,
video camerasSony DXC-390d, and frame grabbersScion
CG-7d. The sample temperature was controlled by a direc-
tional solidification stage in which the sample is translated at
a constant velocity through a known temperature gradient.
Directional solidification allows the growth front to be ex-
amined at an approximately constant position in the labora-
tory frame.
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Data from the resulting growth movies were analyzed us-
ing custom macros created with digital image processing
softwaresNIH Image, v. 1.61d.

III. EXPERIMENTAL RESULTS

The phase behavior of this binary solution has been ex-
perimentally studiedf7g. The phase diagram is somewhat
complicated, with C23 able to solidify into an orthorhombic
crystalline phase, or one of several “rotator” phases. Figure 1
summarizes the details required for our analysis. The solid
curve indicates the liquidus curve, below which the solution
phase separates into a C23 depleted solution and a solid C23
phasese.g., crystalline or rotatord. Since C12 is only sparingly
soluble in the solid phases of C23, the solidus line is vertical
on the right edge of the graph. Experimentally, we have ob-
served that for high C23 concentrationss*58%d, it is diffi-
cult to achieve significant undercooling before solidification
beginsf5g. At low concentrations, however, a reproducible
degree of undercooling is achieved, as represented by the
dashed curve in Fig. 1. This has been explained as the result
of nucleation via a transient, metastable phaseswith negli-
gible nucleation barrierd, which becomes possible at ather-
modynamicallydetermined undercoolingf7g.

Pure normal alkanes with odd chain length between 11
and 43 typically crystallize into the orthorhombic structure,
forming platelike crystals with largeh001j faces bound by
h110j and h010j planesf8g. The f001g direction, correspond-
ing to the orientation of the alkane molecules, is then the
slow growth direction. In the presence of PA-18, the crystals
instead form a meshlike, highly branched network. This
growth morphology is illustrated in Fig. 2.

When crystallized by directional solidification, we find
that for low imposed sample velocities ranging up to
,6 mm/s, the crystallized network is organized into bands,
as shown in Fig. 3. In most cases, successive bands nucleate
ahead of the primary growth front and grow laterally to
cover the previous band. This process repeats at approxi-
mately equal intervals, resulting in a nearly periodic pattern

of bands perpendicular to the sample motion. X-ray diffrac-
tion data snot shownd reveals no preferred orientation of
crystallites relative to the imposed growth direction.

The lateral growth of a new band is quite rapid
s,80 mm/sd relative to the average rate of advance of the
front. As a result, the average front position advances in
nearly steplike fashion controlled by the formation of new
bands, with growth of the previous band playing only a mi-
nor role. However, the density of crystallites within a band
continues to increase after the initial formation of the band,
as evident in Figs. 3 and 4. Figure 4 shows the increase in
optical density of two bands as a function of time.

We measured the dependence of the band repeat spacing
on experimental parameters, such as the imposed velocity
and C23 concentration. The results summarized in Fig. 5
fspacing vssad imposed velocity andsbd C23 concentrationg
indicate that the repeat spacing is a decreasing function of
both parameters. Measurements of the dependence of the
spacing on the temperature gradientsnot shownd indicate that
the spacing decreases with increasing gradient.

FIG. 1. Phase separation behavior of C23/C12 solutions. The
solvated state is unstable below the liquidusssolid curved, resulting
in solidification of a nearly pure C23 phase. For small C23 concen-
trationss&58%d, solidification typically begins at temperatures be-
low the dashed curve, while no significant undercooling is seen at
higher concentrations.

FIG. 2. Meshlike network formed by C23 crystallization from
34 mol % solution in C12 in the presence of 1.7310−3 mol %
PA-18. In this case the sample is moved to the right in a temperature
gradient of 10°C/mm at aconstant velocity of 32mm/s, resulting
in a front that remains at a nearly constant location in the gradient.
The scale bar is 100mm.

FIG. 3. Banded morphology resulting from directional solidifi-
cation of C23 in the presence of 1.7310−3 mol % PA-18. Here the
C23 concentration was 34 mol %, and the imposed velocity was
1.6 mm/s. The scale bar measures 200mm.
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IV. A CONTINUUM MODEL FOR MESH GROWTH

The experimentally motivated mathematical challenge is
to develop a simple mesh growth model that can be applied
to an isotropic disorganized clutter of fibrils. A few mesh
growth models have been previously suggested, particularly
for spherulitic growth. These models study mechanisms for
lamellar branchingf9g, bundle formationf10g, fibril align-
ment within a spherulitef11g, and crystallization into macro-
scopic multispherulitic structuresf12,13g. Several math-
ematical studies have been devoted to the surprising stability
of spherulitic frontsf14g. The kinetically-limited aggregation
regime has been modeled by cellular automataf15g, which
were subsequently approximated by two coupled partial dif-
ferential equationsf16g; however, these models were devel-
oped for radial growth and with a single fixed growth direc-
tion, and so may not be applied to our system.

We choose to model the growth in a coarse-grained ap-
proximation, where volumes of interest are far larger than
any individual crystal or structural unit. Formulated as such,
our model does not predict the formation of the network
geometry itself, but is powerful enough to describe propaga-
tion of the crystallization front and thickening due to con-
tinuing crystallization in regions left behind. We consider the
volume fraction of crystalsfsx ,td to be the only important
field variable of the aggregate, with mesh geometry factors
included via predefined constants that can be estimated from
experimental data. In Sec. IV A, we develop a partial differ-
ential equation, similar to the Fisher-Kolmogorov-Petrovsky-
Piskunov sFKPPd equation, to describe the growth. The
FKPP equation, presented in 1937f17g, and variants have
been successfully applied to various processes involving
nonlinear front propagation, including crystallizationf1g. An
extensive review of the classical FKPP equation can be
found in Ref.f18g.

The growth-evolution equation alone is not sufficient to
explain the banding process. Observations that nucleation
events persistently occur ahead of the front, but not in the
cooler region closer, can be explained by solute depletion
sand consequent decreased supersaturationd at the growing

front. The width of the depletion zone is expected to be
,D /v f, whereD is the diffusion constant andv f is the front
velocity. This expected width is of the same order of magni-
tude as the observed band spacings. Beginning with empiri-
cal laws for diffusion in porous media in Sec. IV B, we in-
clude mass transfer via a second partial differential equation.

A. Growth-evolution equation

In order to develop the continuum approximation, we for-
mally separate the growing aggregate into aggregation units.
Each aggregation unit has the same volumen, the same num-
ber of facesnj of each typej , and the same dimensionsl j,
measured perpendicular to the faces. The units are assumed
to occupy the same volume whether they are aggregated or
diffusing in solution.

The time evolution off depends, in general, on two types
of terms, representing local and nonlocal effects. The local-
growth terms cause “thickening” of the structure. The non-
local, gradient terms allow the structure to propagate in
space.

Let us begin by considering the homogeneous case. If a
face of typej growssby one aggregation unitd with probabil-
ity pt

j per unit time, the growth rate of the crystalline volume
fraction f is approximately

]f

]t
= no

j

sjpt
j , s1d

wheresj is the number of faces of typej per unit volume
available for growthswhich we refer to as open facesd. The

FIG. 5. Band repeat spacing as a function ofsad imposed veloc-
ity for a sample of concentration of 34 mol %, andsbd C23 concen-
tration for two different imposed velocities. The temperature gradi-
ent was 10 °C/mm inboth cases.sAdapted fromf5g.d

FIG. 4. Sample opacitysin arbitrary unitsd as a function of po-
sition in the sample averaged laterally in a direction perpendicular
to the gradient. Fifteen profiles separated by 20 s intervals are
shown for a sample of C23 concentration 34 mol % and PA-18 con-
centration 1.7310−3 mol % as it is moved with a velocity of
3.2 mm/s through a gradient of 10°C/mm.
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growth probability per unit of time of a facej can be esti-
mated as the ratio of its normal growth velocityv j to the
aggregation unit dimensionl j. The densities of open crystal-
line facessj, are possibly very complicated, model dependent
functions involving the microstructure of the aggregate. In
general, the functions should initially increase with increas-
ing crystalline volume fraction, later start to decrease and
eventually approach zero when little uncrystallized space is
available. As an approximation, we assume that the open
face densities are approximately equal to the product of the
number of units per volumef /n, number of facesnj of type
j on an isolated growth unit, and the probabilitys1−fd that
there is no other aggregation unit located next to the unit’s
face. Consequently,sj =njfs1−fd /n; this is also the simplest
function that has the correct mathematical behavior. In as-
suming that all faces have an equal probability of being
open, we are ignoring details of the microstructure. Since we
expect individual branches to be randomly distributed, the
closer l j is to actual structural measurements such as the
distance between branching points, branch thickness, etc.,
the better one would expect the estimate to work. The ap-
proximation leads to

]f

]t
= fs1 − fdo

j

a jv j , s2d

where the mesh geometry factorsa j =nj / l j can be estimated
from experimental data.

Equations2d can be extended to branched networks if we
allow nj to be fractional. Formally,

nj = n0
j S1 + o

k=2
sk − 1dpk

jD , s3d

wheren0
j is actual number of faces of typej on one unit and

pk
j is the probability that a facej branches intok units when

it grows.
Next we consider nonuniform growth. Let us consider a

small volume inside of the large sample. If the aggregate is
not spatially uniform, we must account for an imbalance be-
tween the number of crystals growing in both directions
across the surfaces of this volume. This can be done as a sum
over the growth facesj and growth directions. We divide the
volume further into elementary slices by coordinate surfaces
perpendicular to one of the basis vectorsê1 ssee Fig. 6d. We
choose each elementary slice to have thicknessl j =h1dx1 and
volumel jh2h3dx2dx3, where thehi are scale factors. First, we
account for aggregation units growing into the slice centered
at x1 from the left. The slice on the left contains
fl jh2h3dx2dx3gnjfsx1−dx1d /n faces of type j , of which a
fraction h1+

j are oriented in theê1 direction. These faces
grow with a probability per unit timev j / l j, each increasing
the crystallized volume byn per growth event. The crystals
that cross the boundary into the selected slice are limited by
the available space in that slice, and not in their slice of
origin. Thus, the growth is “unblocked” with probability 1
−fsx1d. Because of the choice of slice thickness, only half of
the generated volume, on average, crosses the slice border.
Similarly, we must subtract the solid volume that would have

been grown inside of the slice, but instead escaped through
the left surface. Therefore, the net correction to the grown
volume due to the left surface alone is

fl jh2h3dx2dx3g
nj

n
ffsx1 − dx1dh1+

j − fsx1dh1−
j g

3 f1 − fsx1dg
v j

l j

n

2
. s4d

If we assume that the fraction of allsopen and blockedd j
faces oriented in theêi direction is equal to the fraction of all
j faces oriented in thes−êid directionsi.e., hi+

j =hi−
j =hi

jd, this
correction becomes

−
1

2
dx2dx3n

jv jf1 − fsx1dgFh2h3
h1

j

h1

]f

]x1
G

x1−dx1/2
. s5d

When we add the similar correction for growth across the
right surface,

1

2
dx2dx3n

jv jf1 − fsx1dgFh2h3
h1

j

h1

]f

]x1
G

x1+dx1/2
, s6d

replace the difference by a derivative, and divide by the slice
volume l jh2h3dx2dx3, we obtain the correction to]f /]t due
to facesj and directionê1,

f1 − fsx1dgk jv j 1

h1h2h3

]

]x1
Fh2h3

h1
j

h1

]f

]x1
G , s7d

wherek j =njl j /2.
This correction procedure must be repeated for all face

types j and directionsêi. Summation overj and i leads us to
the final growth evolution equation

]f

]t
= s1 − fdo

j
v jfa jf + k j ¹ sh̃ j ¹ fdg, s8d

whereh̃ j is the set of diagonal matrices diagsh1
j ,h2

j ,h3
j d, rep-

resenting the distribution of faces of typej over the three
orientations.

In cases that are purely kinetically limited, the normal
growth velocitiesv jsc,Td are parameters. Otherwise, they are
functions of the unknown fields, to be determined by includ-
ing mass and heat transfer equations.

FIG. 6. Schematic of an elementary slice defining the variables
used in the text.
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B. Mass transfer equation

Growing branches of the aggregate present obstacles to
the path of the diffusing molecules, decreasing diffusion
rates. Diffusion in such media is a mathematically compli-
cated problem. Therefore, either of two semiphenomenologi-
cal treatments are typically usedf19,20g. Both approaches
adjust the diffusion constantD in Fick’s law,

Jc = − D = c, s9d

wherec is a concentration in moles per volume andJc is the
corresponding current density. The first approach to adjustD
is to multiply the diffusion constant in homogeneous solu-
tion, D0, by porosity of the structures1−fd divided by tor-
tuosity sa path complexity parameterd. The other approach,
adopted here, is to include the phenomenology into one mul-
tiplier s1−fdm. The exponentm has been estimated for dif-
ferent media and found to be close to 2f19g. We thus assume
an effective diffusion constant given by

Dsfd = D0s1 − fd2. s10d

Considering mechanical flows makes the problem needlessly
complicated, hence we assume that there is no volume
change during crystallization. This assumption is formally
equivalent to the claim that an aggregation unit occupies the
same volume in both the crystal and liquid phases. Mass
transport by aggregation unit diffusion must also satisfy local
mass conservation:

]r

]t
= − = ·Jc, s11d

wherer is the total molar density of the aggregate material
sincluding aggregation units in both the solid and liquid
phasesd. If we incorporate Eq.s9d into Eq. s11d and multiply
by the molar volume of the solute, we can express the mass
transfer equation in terms of volume fractions:

]c

]t
= = · sD = wd, s12d

wherew is the volume fraction of solvated material in the
liquid phase, andc is the total volume fraction of the mate-
rial sincluding both the phasesd. Sincew andc are related via
w=sc−fd / s1−fd, the mass transfer equation can be ex-
pressed as

]c

]t
= D0fs1 − fd¹2c − s1 − cd¹2fg. s13d

V. MODEL RESULTS

The system of equations described in the previous section
can be readily used to model front propagation of an aggre-
gate. As a demonstration, we use it to model the aggregate
bands described in Sec. III. In this section, we justify our
choice of parameters and present the results of numerical
solutions to Eqs.s8d and s13d in the one-dimensional case
appropriate to directional solidification.

From optical microscopy data, we estimate the width of
the crystalline branches to be,1 mm. As an approximation,

the aggregation units are assumed to be cubes, sol j =1 mm
for all j . In keeping with the network structure, we assume
that the cubes have two types of faces. Two opposite faces,
type 1, can either grow with ratev1 or branch with probabil-
ity ,0.1. The other four faces, type 2, are assumed to be
quickly inhibited, so that their effective growth rates are
taken to be zero:v2=0. In the case of anisotropic structures,
such as those observed in spherulites, one may need to use
unequal diagonal values in the face orientation matrices
diagshr

j ,hu
j ,hw

j d, e.g., hr
j Þhw

j . In the case of the banding
problem considered here, we adopt an isotropic face orienta-
tion distribution wherehi

1=1/6. Thus Eq.s8d simplifies to

]f

]t
= vs1 − fdfaf + k¹2fg, s14d

wherek,1/a<1 mm. We neglect the branching probability
and the orientation matrices at this point due to the rough
estimates ofa andk.

The most difficult quantity to estimate for this model is
the growth ratev. For simple growth mechanisms, the
growth rate is a power of the chemical potential difference
Dm between the solid and liquid phases, where the power
law depends on the details of the growth mechanism. In the
presence of the kinetic inhibitor, the growth rate does not
obey such a simple growth law. As an approximation, we use
a generic case ofv~ceqDm f3g, whereceq is the equilibrium
molar fraction in the solution, andDm=kBT lnsc/ceqd
<kBTsc/ceq−1d. Consequently, we use

v = vksc − ceqd, s15d

wherevk<5310−6 m/s is chosen so thatv at the instant of
nucleation agrees with the experimentally measured lateral
growth velocities. The equilibrium concentrationceq is deter-
mined from a fit to the experimental liquidus curvef5,7g
according to

Tsceqd = aX + bX lnsceqd, s16d

whereaX=45.9 °C andbX=10.2 °C. In the conserved vol-
ume approximation, molar fractionc is related to volume
fraction in the solutionw by 1/c−1=ls1/w−1d, wherel is
the solvent to solute molar volume ratio.

As discussed above, new bands are initiated by nucleation
events ahead of the front; consequently, a nucleation term
n*J0, wheren* is the volume of the critical nucleus, andJ0 is
the nucleation rate, must be introduced into Eq.s14d. Then

]f

]t
= vs1 − fdfaf + k¹2fg + n*J0. s17d

Since the nucleation events reproducibly occur at undercool-
ings defined by the “freezing” or “rotator” curve, we ap-
proximate the nucleation term via a step function as

n*J0 = n0H„c − cRsTd…, s18d

whereH is Heaviside step function,cRsTd is the rotator curve
si.e., the reproducible freezing curved, andn0 is a nucleation
seed. We found nearly identical results for a broad range of
small values ofn0. The rotator curve was also measuredf5,7g
and found to be
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TscRd = aR + bR lnscRd + cR ln2scRd, s19d

whereaR=47.24 °C,bR=13.0 °C, andcR=0.19 °C.
The temperature gradient in the sample is imposed by

temperatures of 10 and 50 °C maintained at opposite sides of
a 3.7 mm gap. The temperature inside of the,0.075 mm
thick sample is nearly identical to the temperature of the
,1.3 mm thick enclosing glass. When the sample is moved
with a constant velocity from the hot to cold side of the
apparatus, the gradient is not constant throughout the sample,
due to the finite heat conductivity of glass. The deviation is
easy to estimate theoretically by solving the heat conductiv-
ity equation in the lab frameswhich is moving with respect
to the glassd. The maximum deviation expected is 0.6%.
Therefore, the temperature gradient can be considered con-
stant throughout the sample.

The diffusion constant for C23 in C12 is estimated to be
D0<5310−6 cm2/s, based on results of Ref.f21g.

Using the boundary conditions

s¹fdn = 0 ands¹cdn = 0 s20d

guarantees zero mass current through sample borders.
We solve the system of Eqs.s13d, s17d, and s20d with a

parallel implementation of the explicit finite difference
methodf22g, using Message Passing InterfacesMPId f23g.

Our model produces the distinct banded structures for a
range of imposed velocities. Figure 7 represents the gradient
portion of the sample in the banded growth regime. In the
particular frame shown, a new band has just nucleated: the
solution concentration curve is nearly tangent to the freezing
srotatord curve at the nucleation point. A series of frames, as
shown in Fig. 8, shows the evolution of a pair of bands. Of
note are the observations that growth of a band occurs pre-
dominantly on the warm side, and that growth continues af-
ter nucleation of the next band. We performed a series of
runs at varying imposed sample velocities and initial C23
concentrations to determine the dependence of the band re-
peat spacing on sample conditions for our model. The results

are shown in Fig. 9. As can be seen, the band spacing de-
creases with increasing imposed velocity and increasing con-
centration.

VI. DISCUSSION

Our simulations of directional solidification based on the
model described in Sec. IV exhibit the same behavior as we
observed in the experimental studies described in Sec. III. In
particular, including the possibility of nucleation results in
the formation of a banded structure. To generate this simula-
tion data, we assume that nucleation occurs reproducibly at
the instant when the rotator phase becomes stable relative to
the solution phase, even though it is not stable relative to the
crystalline phase. This nucleation mechanism via a meta-
stable phase has been previously invoked to explain the re-
producible freezing temperature observed for alkane solu-
tions f7g; here, it results in the regular nucleation of new
bands in the supersaturated region ahead of the growth front.

Both experimental and numerical results show that the
bands grow predominantly on their warmer edges, presum-
ably because of depletion due to growth of the previous

FIG. 7. Snapshot of the simu-
lated evolution of the banded net-
work showing crystallized frac-
tion and solute concentration
relative to the phase diagram.f
andc are in terms of volume frac-
tion, while c, the liquidus curve
ceq, and the freezing curvecR are
measured in mol %. In this case,
the C23 concentration was
34 mol % and imposed velocity
was 1.6mm/s.

FIG. 8. Volume fraction of solid phase. Ten profiles separated by
40 s intervals are shown for the same simulation as in Fig. 7.
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band. The details of the profile shapes depend on the growth
conditions in both the experimental and numerical cases. The
model predicts a dependence of the spacial period of the
bands on parameters such as imposed velocity and initial
solution concentration that is in agreement with the experi-
mental findings. Such agreement between model and experi-
ment strongly suggests that the mechanism for band forma-
tion initially presented inf5g is essentially correct.

Although the solute concentration considered here is
much higher than that of any single component in a typical
diesel fuel or fuel oil, the possibility of nucleation and
growth via the rotator phase may be an important consider-
ation in the development of improved additives for low-
temperature operability. For instance, this mechanism may
allow growth of new crystals even when existing crystals
have been completely inhibited. Alternatively, deliberately
exploiting this nucleation mechanism may allow the genera-
tion of an increased number of crystal nuclei, resulting in
smaller crystals for a given crystallized fraction.

Curiously, our experimental results do not show a strong
dependence of thelateral growth velocity on imposed veloc-
ity sthough it does depend weakly on the initial sample con-
centration with lower lateral velocities for higher concentra-
tionsd. This implies that the supersaturation of the crystalline
phase at the time of band nucleation is relatively constant
regardless of the band spacing. The numerical results also
show an approximately constant supersaturation at the in-
stant of nucleation over a broad range of sample velocities.
This can be understood in terms of Fig. 7, which shows that

the separation of the curvescR and ceq in the temperature
gradient remains approximately constant over a wide range.

The velocity ranges studied are limited at the low end for
the same reason in both the experimental and numerical
cases: finite sample size. Too few bands can form in a sample
after initial transient effects and before the approaching
sample boundary becomes important. At higher velocities,
the experimental bands do not form clean parallel structures
and eventually merge. The bands produced by the model also
become indistinguishable at higher imposed velocities.

Although the model presented here was developed to de-
scribe a particular crystallization system, it may be possible
to apply it to a larger variety of crystallization processes
involving a nondense front of crystallites. One of its key
features is that it considers both growth kinetics and diffu-
sion, unlike, e.g., the Stefan model, in which equilibriumsor
small departures from equilibriumd is assumed at the front
f1g. This was necessary for a description of our experimental
system, in which both processes are important. Growth im-
mediately after nucleation is in a strongly supersaturated
sand therefore kinetics-limitedd regime, as evident from ob-
servations of an initially spherulitic morphologyf5g. Diffu-
sion becomes important during the later stages of growth,
when the supersaturation decreases and depletion results in a
nearly complete cessation of growth on the trailing edges of
bands. The ability to include both kinetics- and diffusion-
limited growth will also be useful in cases where a crossover
can occur due to changing crystallization conditions.

Our model is easily applied to cases with cylindrical and
spherical symmetry. In these cases, our numerical resultssnot
shownd indicate a constant front velocity in the isothermal
case appropriate to spherulitic growthf24g. While other
models have been proposed to describe such cases, they in-
volve a detailed description of the microstructuresincluding,
for instance, a radial orientation of crystallitesd, which varies
from system to system and is not always well characterized.
Although results which depend on such details are lost in our
model, an understanding of the essential behavior on larger
length scales is often the principal goal.

VII. CONCLUSIONS

We have described a simple model for the growth of crys-
talline networks from solution. This model incorporates sol-
ute diffusion, realistic kinetics based on the thermodynamic
phase diagram, and parameters that can be obtained from
independent experiments. While the model invokes several
approximationssfor instance, the microscopic structure of
the network is assumed rather than predicted, and the depen-
dence of the growth on the details of the structure is only
considered in a mean-field sensed, it is able to capture the
essential features of growth of a crystalline network.

We have used this model to understand the formation of a
unique banded crystallization structure reported in an earlier
work. The model exhibits the main features of the banded
growth, is able to predict the correct dependence of the band
spacing on several experimental parameters, and produces a

FIG. 9. Band repeat spacing as a function of sample velocitysad
and sample concentrationsbd. Error bars represent 95% confidence
intervals due to statistical variation of the spacing during one simu-
lation run.
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band density-profile evolution in qualitative agreement with
the experimental observations.

In addition to its value in modeling the specific crystalli-
zation system studied here, we expect that this model, par-
ticularly in its two- and three-dimensional invocations, may
be useful for understanding other crystalline networks with
meshlike fronts.
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